Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Capturing the Alternative Cleavage and Polyadenylation Sites of 14 NAC Genes in Populus Using a Combination of 3'-RACE and High-Throughput Sequencing.

Identifieur interne : 001021 ( Main/Exploration ); précédent : 001020; suivant : 001022

Capturing the Alternative Cleavage and Polyadenylation Sites of 14 NAC Genes in Populus Using a Combination of 3'-RACE and High-Throughput Sequencing.

Auteurs : Haoran Wang [République populaire de Chine] ; Mingxiu Wang [République populaire de Chine] ; Qiang Cheng [République populaire de Chine]

Source :

RBID : pubmed:29518015

Descripteurs français

English descriptors

Abstract

Detection of complex splice sites (SSs) and polyadenylation sites (PASs) of eukaryotic genes is essential for the elucidation of gene regulatory mechanisms. Transcriptome-wide studies using high-throughput sequencing (HTS) have revealed prevalent alternative splicing (AS) and alternative polyadenylation (APA) in plants. However, small-scale and high-depth HTS aimed at detecting genes or gene families are very few and limited. We explored a convenient and flexible method for profiling SSs and PASs, which combines rapid amplification of 3'-cDNA ends (3'-RACE) and HTS. Fourteen NAC (NAM, ATAF1/2, CUC2) transcription factor genes of Populus trichocarpa were analyzed by 3'-RACE-seq. Based on experimental reproducibility, boundary sequence analysis and reverse transcription PCR (RT-PCR) verification, only canonical SSs were considered to be authentic. Based on stringent criteria, candidate PASs without any internal priming features were chosen as authentic PASs and assumed to be PAS-rich markers. Thirty-four novel canonical SSs, six intronic/internal exons and thirty 3'-UTR PAS-rich markers were revealed by 3'-RACE-seq. Using 3'-RACE and real-time PCR, we confirmed that three APA transcripts ending in/around PAS-rich markers were differentially regulated in response to plant hormones. Our results indicate that 3'-RACE-seq is a robust and cost-effective method to discover SSs and label active regions subjected to APA for genes or gene families. The method is suitable for small-scale AS and APA research in the initial stage.

DOI: 10.3390/molecules23030608
PubMed: 29518015
PubMed Central: PMC6017670


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Capturing the Alternative Cleavage and Polyadenylation Sites of 14 NAC Genes in Populus Using a Combination of 3'-RACE and High-Throughput Sequencing.</title>
<author>
<name sortKey="Wang, Haoran" sort="Wang, Haoran" uniqKey="Wang H" first="Haoran" last="Wang">Haoran Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing 210037, China. njlydxwhr@163.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing 210037</wicri:regionArea>
<wicri:noRegion>Nanjing 210037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Mingxiu" sort="Wang, Mingxiu" uniqKey="Wang M" first="Mingxiu" last="Wang">Mingxiu Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing 210037, China. mxwang@njfu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing 210037</wicri:regionArea>
<wicri:noRegion>Nanjing 210037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cheng, Qiang" sort="Cheng, Qiang" uniqKey="Cheng Q" first="Qiang" last="Cheng">Qiang Cheng</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing 210037, China. chengqiang@njfu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing 210037</wicri:regionArea>
<wicri:noRegion>Nanjing 210037</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29518015</idno>
<idno type="pmid">29518015</idno>
<idno type="doi">10.3390/molecules23030608</idno>
<idno type="pmc">PMC6017670</idno>
<idno type="wicri:Area/Main/Corpus">000F35</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000F35</idno>
<idno type="wicri:Area/Main/Curation">000F35</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000F35</idno>
<idno type="wicri:Area/Main/Exploration">000F35</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Capturing the Alternative Cleavage and Polyadenylation Sites of 14 NAC Genes in Populus Using a Combination of 3'-RACE and High-Throughput Sequencing.</title>
<author>
<name sortKey="Wang, Haoran" sort="Wang, Haoran" uniqKey="Wang H" first="Haoran" last="Wang">Haoran Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing 210037, China. njlydxwhr@163.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing 210037</wicri:regionArea>
<wicri:noRegion>Nanjing 210037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Mingxiu" sort="Wang, Mingxiu" uniqKey="Wang M" first="Mingxiu" last="Wang">Mingxiu Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing 210037, China. mxwang@njfu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing 210037</wicri:regionArea>
<wicri:noRegion>Nanjing 210037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cheng, Qiang" sort="Cheng, Qiang" uniqKey="Cheng Q" first="Qiang" last="Cheng">Qiang Cheng</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing 210037, China. chengqiang@njfu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing 210037</wicri:regionArea>
<wicri:noRegion>Nanjing 210037</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecules (Basel, Switzerland)</title>
<idno type="eISSN">1420-3049</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alternative Splicing (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>High-Throughput Nucleotide Sequencing (MeSH)</term>
<term>Multigene Family (MeSH)</term>
<term>Polyadenylation (MeSH)</term>
<term>Populus (genetics)</term>
<term>RNA Splice Sites (MeSH)</term>
<term>RNA, Messenger (genetics)</term>
<term>Reproducibility of Results (MeSH)</term>
<term>Transcription Factors (genetics)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (génétique)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Facteurs de transcription (génétique)</term>
<term>Famille multigénique (MeSH)</term>
<term>Polyadénylation (MeSH)</term>
<term>Populus (génétique)</term>
<term>Reproductibilité des résultats (MeSH)</term>
<term>Sites d'épissage d'ARN (MeSH)</term>
<term>Séquençage nucléotidique à haut débit (MeSH)</term>
<term>Transcriptome (MeSH)</term>
<term>Épissage alternatif (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Messenger</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>RNA Splice Sites</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN messager</term>
<term>Facteurs de transcription</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Alternative Splicing</term>
<term>Gene Expression Profiling</term>
<term>High-Throughput Nucleotide Sequencing</term>
<term>Multigene Family</term>
<term>Polyadenylation</term>
<term>Reproducibility of Results</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Famille multigénique</term>
<term>Polyadénylation</term>
<term>Reproductibilité des résultats</term>
<term>Sites d'épissage d'ARN</term>
<term>Séquençage nucléotidique à haut débit</term>
<term>Transcriptome</term>
<term>Épissage alternatif</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Detection of complex splice sites (SSs) and polyadenylation sites (PASs) of eukaryotic genes is essential for the elucidation of gene regulatory mechanisms. Transcriptome-wide studies using high-throughput sequencing (HTS) have revealed prevalent alternative splicing (AS) and alternative polyadenylation (APA) in plants. However, small-scale and high-depth HTS aimed at detecting genes or gene families are very few and limited. We explored a convenient and flexible method for profiling SSs and PASs, which combines rapid amplification of 3'-cDNA ends (3'-RACE) and HTS. Fourteen NAC (NAM, ATAF1/2, CUC2) transcription factor genes of
<i>Populus trichocarpa</i>
were analyzed by 3'-RACE-seq. Based on experimental reproducibility, boundary sequence analysis and reverse transcription PCR (RT-PCR) verification, only canonical SSs were considered to be authentic. Based on stringent criteria, candidate PASs without any internal priming features were chosen as authentic PASs and assumed to be PAS-rich markers. Thirty-four novel canonical SSs, six intronic/internal exons and thirty 3'-UTR PAS-rich markers were revealed by 3'-RACE-seq. Using 3'-RACE and real-time PCR, we confirmed that three APA transcripts ending in/around PAS-rich markers were differentially regulated in response to plant hormones. Our results indicate that 3'-RACE-seq is a robust and cost-effective method to discover SSs and label active regions subjected to APA for genes or gene families. The method is suitable for small-scale AS and APA research in the initial stage.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29518015</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>08</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1420-3049</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>23</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2018</Year>
<Month>Mar</Month>
<Day>08</Day>
</PubDate>
</JournalIssue>
<Title>Molecules (Basel, Switzerland)</Title>
<ISOAbbreviation>Molecules</ISOAbbreviation>
</Journal>
<ArticleTitle>Capturing the Alternative Cleavage and Polyadenylation Sites of 14 NAC Genes in Populus Using a Combination of 3'-RACE and High-Throughput Sequencing.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E608</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/molecules23030608</ELocationID>
<Abstract>
<AbstractText>Detection of complex splice sites (SSs) and polyadenylation sites (PASs) of eukaryotic genes is essential for the elucidation of gene regulatory mechanisms. Transcriptome-wide studies using high-throughput sequencing (HTS) have revealed prevalent alternative splicing (AS) and alternative polyadenylation (APA) in plants. However, small-scale and high-depth HTS aimed at detecting genes or gene families are very few and limited. We explored a convenient and flexible method for profiling SSs and PASs, which combines rapid amplification of 3'-cDNA ends (3'-RACE) and HTS. Fourteen NAC (NAM, ATAF1/2, CUC2) transcription factor genes of
<i>Populus trichocarpa</i>
were analyzed by 3'-RACE-seq. Based on experimental reproducibility, boundary sequence analysis and reverse transcription PCR (RT-PCR) verification, only canonical SSs were considered to be authentic. Based on stringent criteria, candidate PASs without any internal priming features were chosen as authentic PASs and assumed to be PAS-rich markers. Thirty-four novel canonical SSs, six intronic/internal exons and thirty 3'-UTR PAS-rich markers were revealed by 3'-RACE-seq. Using 3'-RACE and real-time PCR, we confirmed that three APA transcripts ending in/around PAS-rich markers were differentially regulated in response to plant hormones. Our results indicate that 3'-RACE-seq is a robust and cost-effective method to discover SSs and label active regions subjected to APA for genes or gene families. The method is suitable for small-scale AS and APA research in the initial stage.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Haoran</ForeName>
<Initials>H</Initials>
<Identifier Source="ORCID">0000-0002-8323-6929</Identifier>
<AffiliationInfo>
<Affiliation>The Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing 210037, China. njlydxwhr@163.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Mingxiu</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>The Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing 210037, China. mxwang@njfu.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cheng</LastName>
<ForeName>Qiang</ForeName>
<Initials>Q</Initials>
<Identifier Source="ORCID">0000-0001-6759-2483</Identifier>
<AffiliationInfo>
<Affiliation>The Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing 210037, China. chengqiang@njfu.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>03</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Molecules</MedlineTA>
<NlmUniqueID>100964009</NlmUniqueID>
<ISSNLinking>1420-3049</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D022821">RNA Splice Sites</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017398" MajorTopicYN="Y">Alternative Splicing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059014" MajorTopicYN="N">High-Throughput Nucleotide Sequencing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="Y">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026723" MajorTopicYN="Y">Polyadenylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D022821" MajorTopicYN="N">RNA Splice Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015203" MajorTopicYN="N">Reproducibility of Results</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="N">Transcriptome</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">3′-RACE</Keyword>
<Keyword MajorTopicYN="N">Populus</Keyword>
<Keyword MajorTopicYN="N">alternative polyadenylation</Keyword>
<Keyword MajorTopicYN="N">alternative splicing</Keyword>
<Keyword MajorTopicYN="N">high-throughput sequencing</Keyword>
</KeywordList>
<CoiStatement>The authors declare no conflict of interest. The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>02</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>03</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>03</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>3</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>3</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>8</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29518015</ArticleId>
<ArticleId IdType="pii">molecules23030608</ArticleId>
<ArticleId IdType="doi">10.3390/molecules23030608</ArticleId>
<ArticleId IdType="pmc">PMC6017670</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell. 2001 Jun;13(6):1427-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11402170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2010 Aug;23(8):991-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20615110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2012 Jan 04;2:109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22629268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6152-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11972056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2010 Jan;20(1):45-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19858364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Jan;170(1):586-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26582726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 May 1;25(9):1105-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19289445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2013 Mar;14(2):193-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22445902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1997 May 30;89(5):737-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9182761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2008;3(6):1101-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18546601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2012 Jun;22(6):1184-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22391557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jul 26;108(30):12533-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21746925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2015;1255:135-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25487210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2014 Apr 3;508(7494):66-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24476825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Oct;25(10):3640-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24179132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Sep;26(9):3472-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25248552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Oct;25(10):3657-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24179125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Wiley Interdiscip Rev RNA. 2012 May-Jun;3(3):385-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22012871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Jan 28;463(7280):457-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20110989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2015 Jul;25(7):995-1007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25934563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2012 Sep;22(9):1698-710</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22955982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2012 Aug;19(8):845-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22820990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 May;11(5):949-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10330478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3814-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7731989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2013 Jul;14(7):496-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23774734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Jul 21;15:615</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25048171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Feb 22;108(4):501-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11909521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Oct 01;8(10):e74183</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24098335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2006;1(6):2742-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17406530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2017 Aug;27(8):1427-1436</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28522613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2016 Dec;26(12):1753-1760</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27733415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2017 Jun;29(6):1262-1277</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28559476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1995 May 20;227(2):255-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7573945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2014 Apr 17;14:99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24739459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Dec 20;15:1151</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25526808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Feb;170(2):947-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26620523</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Wang, Haoran" sort="Wang, Haoran" uniqKey="Wang H" first="Haoran" last="Wang">Haoran Wang</name>
</noRegion>
<name sortKey="Cheng, Qiang" sort="Cheng, Qiang" uniqKey="Cheng Q" first="Qiang" last="Cheng">Qiang Cheng</name>
<name sortKey="Wang, Mingxiu" sort="Wang, Mingxiu" uniqKey="Wang M" first="Mingxiu" last="Wang">Mingxiu Wang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001021 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001021 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29518015
   |texte=   Capturing the Alternative Cleavage and Polyadenylation Sites of 14 NAC Genes in Populus Using a Combination of 3'-RACE and High-Throughput Sequencing.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29518015" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020